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FORWARD

This summary report is a collectiun of four separate
progress reports prepared under three contracts, which are
all sponsored by the Office of Naval Research in Arlington,
Virginia. This report ccntains the results of investiga-~
tions into the app. ition of the maximum entropy method
(MEM) , a high resoli zion, frequency and wavenumber cstima-
tion technigue. The report also contains a description of
two, new, stable, high resolution spectral estimation tech-
nigues that is provided in the final report section. Many

- examples of wavenumber spectral patterns for all investiga-
ted techniques are included throughout the report,

The maximum entropy method is also known as the maxi-
mum entropy spectral analysis (MESA) technique, and both
names are used in the report. Many MEM wavenumber spectral
patterns are demonstrated using both simulated and measured
radar signal and noise data. Methods for obtaining stable
MEM wavenumber spectra are discussed, bioadband signal cde-~

° tection using the MEM prediction error transform (PET) is
discussed, and doppler radar narrowband signal detection is

demonstrated using the MEM technigue. It is also shown

that MEM cannnt be applied to randomly sampled data.
The two new, stable. hivh resolution, spectral esti-
, mation technigues discussed in the final report section, iy

are name the Wiener-King and the Fourier spectral estima*ion

techniques, The two new tuchniques have a similar devriva-

-
£,

tion kased upon the Wiener prediction filter, but the two
techniques are otherwise quite different. Further develop-
ment of the techniques and measurament of the technique spec-
tral characteristics is :recommended for subsegquent investiga-

tion.
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STABLE MESA ANTENNA PATTERNS

I. INTRODUCTION

A. Wavenumber Power Spectra

Power spectral analysis techniques are applicable to the
processing of spatial multi-channel antenna data, since computed
antenna patterns are actually wavenumber power spectra, P(K). The
wavenumber X is a function of 8, the signal angle of incidence to

the antenna as follows:

k = (2m/X)SIN(8)
Because an antenna array is a collector of spatially sampled data,
any power spectral technique which is designed for such discrete

data sets is applicable for computing antenna patterns.

B. High Resolution Power Spectral Techniques

During recent years several high resolution power spectral
techniques have been developed (or rediscovered) for use with dis-
crete data sets. Some of the techniques are: the maximum entropy
method (1), the autoregressive mndel (2), the m~ving average mcdel (3),
the Yule-Walker technique (4), and the maximum (iklihood method (5).
Of these techniques the maximum entropy, autoregressive, and Yule-Walker
techniques are all pole models, the moving average technique is an all

zero model, and maxiumum liklihood is only a criteria functicn applicable

to any model. Most of these methods are described in a tutoral review
article (6). These particular methods have also been investigated
and compared in two reports (7}, (8) in which the best results were

achieved with the maximum entropy metho.l,

More conventional higih resolution Fourier methods have
also been recently developed (9), (10), (11), but have not been so
thoroughly investigated. As a consegilence, in this paper several

methods are investigated for applying the maximum entropy spectral
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analysis technique (MESA) to the processing of spa+tial, uniformly
sampled data.

C. Application of MESA

Several methods of applying MESA to spatial data are inves-
9‘ tigated. In particular gpatial dava, which is simulated for an 8
' element linear antenna array, 1is processed with MESA énd the Burg
technique (1). The Burg technique 13 a recursive method for eval-
uating the MESA filter weights, which substantially reduces the
number of calculations required of the more conventional inverse
matrix evaluation method.

MESA antenna patterns (wavenumber spectra) may be computed
upon the collection of the set of 8 spatial data samples at any
instant of time. Such "snapshot" patterns are inherently inconsistent
and unstable., However it is possible to compute stable MESA antenna
patterns using one of several stablization technigues. It remains
only to determine which technigue provides sufficient stabhility for
an acceptablie averaging period without destroying the desired high
resolution property which is characteristic of MESA. Averaging
techniques which are investigated employ a time average of one of

the follwoing sets of variables:

a filter weights

covariance matrix

)
b.,) prediction errors
c.)

)

ad "snapshot" patterns

And as an alternative to averaging, stablizatic may also be achieved
with use of time adaptive filter weights. In particular a set of
adaptive filter weights, which are defined as proportional to the

prediction error (12), are utilized in conjuncticn with a proportion-

ality constant (convergence parameter) tc comprise a stable, adaptive

MESA wrocessing technique.

i F

IT. THE MAXIMUM ENTROPY METHOD

&

gl

"he MESA rechnique, as the name implies, originated (1) by




maximizing the entrcpy of a signal mixed with noise. However, the
same filter welghts may also be derived (13) by whitening the Weiner
prediction error filter as specified for discreet data samples (14).

The resulting maximumr entropy wavenumber spectra P(k) is given as

follows:
P
N
(1)
P(k) = N N
1 + Yn exp (iknax) |2
n=1
where
N = number of filter weights (LENEM)
M = number of data samples
Py = total noise power
AX = antenna element spacing
N
H = nth prediction error filter weight of a set of M weights.
The variables of egn. (1), which are computed using a

set of equations known as the "Burg technique", are listed as follows:

a.) Total Noise Power P,\.I

Py = re (rO 1s the data set autocorrelation function)

a _n+l. 2 - . . /
Pyl = Pn[ 1+ () } for (lsn<n) (2)

b.) Filter Weights 7§+l

y1Th = 1.0

N+l N N+l , N * . e

(n = v + Yais 1 (YN—n+2) for (2ZnsinN) (3)

B
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M~N
N * N
- T =
2 5, By . Puio
N
NEL for (1SNSM-1) (4)
N+l M=-N
. N, 2 N2
ngl (Bn) * (FN+n)
c.) Forward Prediction Error Fﬁ
Fl = X for (1SKRSM)
K+ 1 K+l ' o
N+1 _ _N+1, _N N
Fr = = Yys1l® Bk-n 7 Tk for (N+1&Xs<M) (5)
d.) Backward Prediction Error Bi
Bl = x for (1<KSM-1)
X K
N+1 *
B _ (N#l,, N N .
X = ({N+l) Feen t Bx for (LlSKEM-MN) (6]
where the Kth data sample = X, for (13KEM)

ITI. MESA SNAPSHOTS

It is possible to compute an antenna pattern with MESA

using only one set of M data samples all recorded at the gsamc in

stant
of time. For example, consider one set of 8 data samples collected
with 8 unformly spaced antennas. The Burg technique equations, edns.

(1-6) are initially evaluat .d for N=1 and M=8, and then evaluated

repeatedly for increasing unit incremental values of N up to the

desired value of ¥ provided that (1lsNs7).




BN

However the final value of N must be such that (NSIN) where NS is
the number of signals present in the given data set Ky

Consider a MESA snapshot pattern evaluated for N=4,M=8
where the Burg technique equations are evaluated repeatedly for
(15N24)., A MESA snapshot pattern of one signal incident at +10
degrees /0 degrees is broadside to the antenna) and a signal-to-
noise ratio of 15 dB is shown in Fig. la. The 8 data points contain
Guassian, white noise, simulated using a set of 8 random numbers
zomputed for a generator "seed" value of 1 (IR=1l). Another MESA
snapshot shown in Fig. 1b, is computed using a different set of 8
random numbers for which IR=2.

The single signal is located accurately at +10 deygrees
(within 7.5 degrees) in both MESA snapshots of Fig. 1. The side
peaks, which are randomly located, occur at different positions
in the two snapshots. The total number of peaks, which represent
the poles of eqn. (1), is always less or equal to the value of N,
the number of filter weights. Since the two independent data sets
used_in the computed antenna patterns of Fig. 1 are considered to be
recorded at two different instances of time, MESA snapshots are
clearly time variant when computed with short (M=8) data sets. It
is evident that scme stablizing technique is needed in the application
of MESA to showt data sets, so that computed MESA antenna patterns

are invariant and repeatakle in time for stationary data.
Iv. MESA INSTABILITIES

Besides the side peak locatior instability depicted by

Fig. 1, another instability associated with MESA is the inaccurate
rapresentation of signal peaks. Signal peaks may not be accuracely
locatrd at very low signal-to-noise ratios or when other signals
are present at adjacent angles. Nearby signals cause distortion

in both signal location and in relative signal peak height. It

has peen not=d (15) that isolated MESA signal peaks are not linearly

b pop b s, o

related to the signal-tc-noise ratios, but the actual relationship
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has not been demonstrated. Both the power level and relative phase
of adjacent signals affect the accuracy of :he MESA power spectra.
Such signal instabilities have been noted previously (14).

The noise field associated with a multi-channel ant¢anna
array may also be a source of signal distortion. Split signal peaks
are a commcn LFroblem with MESA snapshots (16). An example of how
such problems arise is depicted in Figs. 2 and 3. The MESA snapshot
of Fig. 2 1is computed using only 8 complex noise data points (no
signal present) and a 5 point filter (N=5). The MESA snapshot of
Fig. 2 has two large noise peaks near 0 and 10 degrees. When a
signal havirng a 10 dB signal-to-noise ratic is introduced into the
same noise field (IR=5), at an angle of +5 degrees, the signal is
ambiguously represented in the MESA snapshot of Fig. 3 by a split
peak (two adjacent peaks). The split peak which is observed in
Fig. 3 rear the signal angle of +35 degrees is apparently due to
interference of the two noise eaks which are preser' at angles
near the signal. Since the complex noise peaks are randomly located,
split peaks caused by such noise interference may be eliminated
with some form of averaging within the MESA algorithm. The same

set of complex noise data {(IR=5) is used in the evaluation of several

averagirg techniques.

V., AVERAGING TECHNIQUES

A. Averaged Filter Weights

It is not necessary to average a complete set of filter

. + . . .
weights. YE 1 , where (1sniN), since all filter weights for
{(22n2N) are a function of the last filter weight Yg:% as given by

egn. (3). The last filter weight, which is given by eqn. (4) is

computed and averaged over L data sets. L
N+1 1 N+1

= — Z YL
q N+1

TN+l T T (kht)

In all, a total of (L'M) data points are utilized n computing such

an averaged MESA antenna pattexrn.

An average MESA anterna pattern utilizing an averaged
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last filter weignt is shown in Fig. 4 for one siganl incident at
+5 degrees and a SNR of 10 dB. Peak splitting is eliminated in
the example of Fig. 4 with an average of only two filter weights
(L=2) and utilizing a total of only 16 data points. The 16 data
points include the same complex neise data set used in the example
of Fig. 2 (IR=5). The signal is very prominent in the averaged
MESA pattern of Fig. 4, although the signal peak is slightly displaced
at an angle of +4.5 degrees denoting an inaccuracy of 0.5 degrees.
Further averaging beyond L=10 provides little or no improvement.
The averaged MESA antenna pattern for L=10, which is shown in Fig. 5,
has nearly white noise. The noise peaks are very subdued and are
almost eliminated, conseguently very littie imprcvement is possible.
But the signal peak, which is considerably sherpened, remains at
+4.5 degrees with an inaccuracy of 0.5 degrees.

Resolution capability is demonstrated by the averaged
MESA antenna pattern of Fig. 6, where two signals with a SNR of
13 8B each signal, each element, are just resolved. Best resolution,
which is depicted in Fig. 6, is achieved for N=7 and L=20. The two
signals as detected in Fig. 6 are located closer together at angles
of 0.5 and 4.5 degrees. The technique of averaging filter weights
iz a simple and fast stablization technique which results in good
resolution and detection capability for a relatively small number of

repetitive calculations utilizing 160 (L<M) data points.

B. Averaged Prediction Errors

An avevaged MESA antenna pattern may alsc be computed
by averaging the forward and backward prediction errors as defined
by egns. (5) and (6). Prediction errors for filter sizes 1 - N

are all calculated in the Burg technigque, however best results

are achieved by averaging on

[

N 3 5 P b =] £ oy
v the sct of prediction =rrors for

tte specified filter size 1 as follows:

: |
P =% < [FN (xit) for (NsnsM)
=1
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R =-Ll-< (BN _kAt)" for (1<nS<M-N)

Both prediction error averaging and filter weight averaging are
4 comnaratively simple and fast averaging techniques, but the two
. averaged antenna patterns are quite dissimilar.
An averaged MESA antenna pattern computed by averaging

the prediction errors is shown in Fig. 7 where the split peak if;
(obtained for L=1, Fig. 3) is eliminated by averaging w.th only
one additional Jata set (L=2). The result of further averaging
is shown for L=10 in Fig. 8. The filter size (N=5) and the
complex data set for IR=5 are the same as used in all previous
examples of averaged MESA patterns. It is evident by observation

‘ of Figs. 7 and 8 that averaging of prediction errcrs does not

v whiten th2 noise and does not enhance the SNR, but peak splitting
is eliminated. In Fig. 8 the signal peak is located at +4 degrees
for an error of one dedree. Further averaging beyond L=10 does
not improve the antenna pattern for one signal and an 8 element
array.

Prediction errors are averaged in Fig. 9 for two szignals incident

at 0 and +6 degrees. The two signals are well resolved and the
SNR 1s improved for L=30. One signal is accurately located at
0 degrers, while the second signal which is located at +4.5 degrees

is in error by 1.5 degrees. The SNR is significantly improved,

more so than for the single signal of Figs. 7 and 8.

C. Averaged Covariance Matrix

While not so obvious, the equations of the Burg technique
do contain elements of the covariance matrix. These
elements may be averaged and incorpovated into the Burg technique
aquations without altering the utilization or the characteristics

N+
ot the Burg technique. The only independent filter weight ?;+}

which is defined by egn. (4) of the Burg technique, is a function
; e N
of the forward and backward orediction ervors, F§+I and Bl
15
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Products of the prediction errors may be considered as functions
of the covariance matrix elements by considering the original

definition as follows:

Gl Ve

Forward prediction error

Ry F = Y X (7)

N
N 5 N
N+I 27y 'n “n+I-n+l

Backward prediction error

—

|

N N, *

By = I_0v)) Xpnog (8)
n=1

wlhere ‘YT = 1.0

. . +
The last filter weight Y§+i of egn. (4) may be expressed as the

ratio of two functions, TOP and BOTM, as follows:

:
§
%i

N+HL :
N+l = 2 TOP/BOTM ii
where ?
;
- - N N, * i
TOP = % Foo . (BY) (9) -
Tt N+ I T
M-N )
2
BOTM = ¢ (FN ) + (BN)2 (10)
Ie1 N+1I I

i

Insertion of the prediction error definitions egns.
(7) and (8) into egns. (9) and (10) and re-crdering the summations

yields the desired functional fourm as follows:

< M-N
- TOP = 1 Ny
A1

I SN+ T-m+l

2
'.d
————
<
o I
*
=
-
4
=
(
=
N
¥
[ |
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NN NN
TOP = & % Yoy r (N-M-n+2)
m 'n
m=1 n=1
where M-N )
r (N-m=n+2) = I XI+N—m+l XI+n—l (11)
I=1
BOTM = “:,\] I; v ox p ot x
1=1 | p=1 ™ I+N-m+1 -1 n N+I-n+1l
N * L;\_] N * i *
* Lo lvy) XN+m-l - (Yn) ki+n-l
m=1 =1
N N N N N N
BOTM = F, Loy ) rlo-m) + I Loolry) vy r(men)
m=1 n=1 m=l n=1 ’
where ;
M-N Y ;
r(n-m) = TEl A+ Tomtl SNeT ontl (12) :
i
M-N * i
- = )] .
r (m-n) b XI+m-1 XI+n—l (13) a
I=1 .
It is apparent that the autocorrelation coefficients defined by %
eqns. (11), (12) and (13) may be averaged as follows: if
e
§
13
M-NL T . i
r(N-m-nt2) = 7= 3 X(kpt) X (k) (14) ;
I=1 k=1 N+I-m+]l T+n-1

20




M-N L L N
r (m-n) = I £ I X (kAt) X (kAt) (15)
I=1 k=1 N+I-m+l N+I-n+1l
_ M-N L L N
r(m-n} = I T L X(kat) X(kAt) {16)
I=1 k=1 TI+m-1 I+n-1
The autocorrelation coefficients (egns. (11), (12) and (13)) are
elements of the covariance matrix for the data set Xl' XZ’ RN XM'
The averaged covariance matrix elements given by egns (14), (15) and
(16) may be utilized to compute the last filter weight Fg:i and an
averaged MESA antenna pattern.
The results due to averaging of the covariance matrix
are observed in Fig. 10 where the split peak shown in Fig. 3 is
eliminated with only one additional data set (L=2). Alsc the noise

is considerably whiter which greatly improves the SNR., Further
averaging provides little additional improvement as noted by Fig. 11,
where for L=10 the noise appears slightly whiter and the SNR is
slightly enhanced over the resulis shown in Fig. 10.

I'wo signals located at 0 and +6 degrees are well resolved
in Fig. 12 with covariance matrix averaging, for L=10 and an input
SNR of 13 dB each signal. The background noise 1s substantially
reduced although it is not as white as the noise “hat appears in
Fig. 1ll. Averaging of the covarience matrix elem=nts is, as demon-

strated, an evcellen! averaging and stablization technique.

D. Averaged MFESA Snapshots

Individual MESA antenna patterns, which are referred to
as "snapshcts” (e.g. Fig. la, 1lb), may be averaged in order to
obtain a stabie antenna pattern. This method has been utilized (14)

successfully using optimal filcter sizes. However, if the optimal

filter size cannot be determinad, a fixed filter size may be selected




g AT Y I T T $ T T

7= “XJI1B0 IDUBTIBAOD pIBBI2AR “[BUBTS 3u0 - Q1 "374

ﬁn SIREI NI TN
O % UM P O S O O OF 8D $Pi- 8T oTe iee 87 IR WO ORATE

~ N

I

Y —
9R- LB o

2"~
B0 NI ¥390d 3AIIMTR

&
g
¢ =Y]
gP 01 =YNS
SjyBrosm IMI ¢
Keimw Juawafe §
6
NY3LIYd JINNIINY US53N
SV VN BEORS. SRS WA T SSREY_ M W RIS WS 1 P ]

=3 [ ll\N




01=1 ‘sioaxs uoyjioipaad pafrIaAB ‘JBUSTs aup - 1 "8Iy

SR NI JONY
G 08 0Bl 89 OB 0TS 0 OE D91 0D O0Di- OO 00K O 0T TO- 6P~ -....-?a.i“

r
o

1///r(\\\\\\)llll///!!!l\lt\lslllllrm

G =¥I

dp 0T =UuNg
s3yh1sm I931T3 ¢
Avaiie JuBWOTD B

NY3Llbd UNNIING YS3W




01=1 ‘sioias not1otpaiad podriass ‘TBUBIS onl - 71 * 314

SXNPA0 NI 32N
e o W 0T oW TP O OE OF 0D O O O I o7 R O VRO

-

j\
/
8

60 NI 3M¥Nd ALY
24

<
-

dp 1 -
sayhtom awly T3 [

Aelle JuauOlT g

NN3L1Hd UNN3INY HS3W

Fay Yo oo - d kAN LA 4L L B L




for computing all the individual MESA snapsho* antenna patterns.

The best resolution is always achieved using the largest possible
filter size (N=M-1). However,

the most unstable.

the larqger filter sizes are also
Consequently, while an average of many MESA
snapshots improves stability, the resultant stable pattern may

not
be a very accurate antenna pattern.

Averaging results for two filter sizes (N=5 and N=7)
are demonstrated in the three following examples.

A siwple average
of two MESA snapshots (L=2)

is shown in Fig. 13
incident at 5 degrees with a SNR of 10 dB. The
occurs for L=1 (Fig. 3)

for one signal

split peak that

is still present in the avecrage of two

snapshots., THowever, therc is improvement in the SNR. There are

cf course twice the number of peaks (l0) as expected for two MESA

snapshots having five filter weights (N=5) each. The consequence

of further averaging is demonstrated in Fig. 14 where 30 antenna

patterns (computed for & signal incident at 5 degrees with a 3NR

There is further improvement in the signal
peak definition and accuracy:;

of 10 dB) are averaged.

the signal is located at +4 degrees,

for an error of one degree. The SNR is improved substantially.

In Fig. 15 the resultant ~vorage of MESA antenna patterns LOr two
signals incident at 0 and +6 degrees is disappointing as the two

signal peaks arc not very well defined. Instead there are four

strong peaks, two of which are in crror. Thlere is of course

Lmprovemwment in the SNR, but the resolution characteristics are very

poor. In the cxample of Fiy. 15, averaged MESA snapshots all have

the maximum number (7) of filter weights. Better results have

been achieved (14) using an optimal filter size, however the

optimal filter size can only be computed if the incident signal
angles are known.

VI. ADAPTIVE FILTER WEIGHYS

While the MESA technique is inherently adaptive,

other
adaptive methods which have bern demonstrated (17,

18) have simple
procedures for updating the filter weights. One such procedure {12)

25
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< increases the filter weights in proportion to the correlation of
the prediction error with the data set. TFor example, a filter
weight W(k) computed at time kAt may be updated at a later time
(k+1)At to give W(k+1l) as follows:

*
W(k+1l) = W(k) + u E en(k)xn(k) (17)

where the correlation is taken over all computed prediction errors

en(k). The prediction errors are defined as follows:

2\
X

e (k) = X (k) =~ n(k) (18)

A
for data samples Xn(k) and predicted values Xn(kl The proportionality

constant is denoted by the convergence parameter y.

In order to incoporate this procedure intce the MESA
technique, a first set of filter weights is computed in the usual
manner as “defined by eqns. (3) and (4). Subsequent filter weights

! Fi(k+l) mzy then be computed according to equ. (17) as follows:

12(k+1) =) v u o Nx (k) (19)

where the prediction error 15 actually the sum of the forward and

backward predic ion errors over all possihble (M=) errors as [ollows:

N N
¥

N
( k) v B 2
“n k) n+H( ) n(k) (20
However, with use of the Burg technigue, onlv the last filter weight
N . . ; )
Tyt need be computed with eqn. (19), since ail other filter woights
29
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N
N
As the prediction error is whitened, the additive zdaptive

{n<N) are dependent upon [, according to egn. (3).

2 component is reduced, since the correlation of a whiter prediction
error with the data set is smaller. Consequently, ithe adaptive
filter weights may converge to become a whitening filter.

5 The result of updating MESA filter weights is illustrated
in Fig. 16 where an "adapted"” MESA antenna pattern is hown for one
signal incident at +5 degrees, SNR=10 dB, and L=2. The "adapted"
pattern for L=2 is of course quite similar to the computed MESA
snapshot (L=1} shown in Fiag. 3, since the filter weights have been
modified only once. The split peak is still present for L=2 in
Fig. 16, but with further adaption the split p=zak is eliminated as
shown in Fig. 17 for L=10. However, the SNR is not improved, although
three noise peaks have been reduced. As observed in Fog. 17 the
noise has remained peaked even after ten adaptions. Cbviously the
adaption methed does not tend to whiten the noise, and consequently
the results are most disappointing.

In another application of the adaptive methced, two
signals incident at 0 and +6 degrees are resolved in cen adaption:
(L=10) as shown in Fig. 18, where the SNR is 13 dB for each signal.
One signal is located accurately at +6 degrees while the other

signal is located at +1.5% degrees with an error of 1.5 degrees.

The SNR is improved with respect to the original (L=1) MESA

snapshot of tig., 3. However, the noise is not whitened in the

adaptive proncess as had been anticipated.

The results from using adaptive filter weights with
MESA are very disappointing, and in addition the value of a con-
vergence parameter must be specified. In the three preceding

examples of the adaptive technique the value of the convergence

parameter u is guite critica. If v is too small, there is little
improvement in the computed antenna pattern, and if u is too large,

there may be considerable distortion of the signal peak.
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VII. RESOLUTION

0f the five stablization methods examined, only two
appear to preserve and enhance the degirable MESA characteristic
of whitening the noise. The resolution capability of bhoth whitening,
stablization methods is demonstrated in one =zxample of two signals
separate | by four cdegrees, at -2 and +2 degrees, with equal SNR
values of 20 dB each antenna element.

A stablized antenna pattern computed by averaging the
covariance matrix is shown in Fia. 19, where the two sigdnals are
not resolved, but only one signal peak is detected at +0.5 degrees.
However both signals are identified in Fig. 20, where the antenna
pattern is computed by averaging the filter weights using a short
average of L=5. The same short average is used in computing both
antenna patterns in Figs. 19 and 20 since further averagirg, which
does appear to improve signal detection, only serves to reduce the
resolution capability. However, some averaging ir necessary in order
to obtain a stable, reliable antenna pattern. The noise is whiter
in Fig. 19, but the resolution is best in Fig. 20. While the two
characteristics appear to be somewhat incompatible, it is necessary
that good resolution be achieved with stable, reliable antenna

patterns.
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VIII. COWCLUSIONS

Split signal peaks, which are a common occurence in
MESA snapshot patterns, are shown to be a consequence of noise
interference. Such noise interference is virtually eliminated
with use of the proposed stablization methads.

0Of the five stablization techniques examined, two have
excellent characteristics, one other is only somewhat satisfactory,
and two were very disappointing. An average of filter weights
and an average of the covariance matrix are both very useful
stablization methods. Both methods serve to whiten the noise
and greatly improve the SNR. 1In addition, split signal peaks
were not observed with use of either averaged filter weights
or averaged covariance matrix eiements. Further testing of
these two averaging methods is clearly justified. Hopefully,
resolution and SNR properties of these two excellent averaging
and stablization techniques will be specifically determined in
future research efforts.

It is doubtful that any of the other three examined
stablizatlon methods are worthy of further consideration.
Neither the averaged prediction errors nor the adaptive filter
welghts served to whiten the noise, and the averaged MESA patterns
proved to be most unstable.

In the one example of two signals separated four
dejrees the MESA antenna pattern computed by averaging filter
we:ights provided the best signal resolution. However, many such

examples need to be accumulated in order to determine thc resolution

characteristics of the recommended MESA stablization methods.
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BROADBAND SIGNAL DETECTTION WITI THE SCOT AND SCOT~PET

1.0 INTRODUCTION

1.1 BRackground

The crosscorrelation technique is useful for
detecting broadband radar pulses. However, it is well
known that the crosscorrelation technigue is adversely
affaected by narrowband interference or narrowband signals
transmitted by radar surveillance systems. Conseguently,
the crosscorrelation peak (due to the broadband signal)
may be obscured by a sinusoidal modulation of the cross-
correlation function caused by the presence of strong
narrovkband components.

Other signal processing technigues may not be
g¢o adversely affected by the presence of narrowband sigual
components. Carter, et al. (1) have provided one snapshot
example, where a broadband signal in the presence of three
n¢ rroewband signals is not detected by the crosscorrelation
function, but is readily detected with the smoothed coher-
ence transform (SCOT).

The SCOT is the Fourier transform of a cross-
power spectral function, which has & frequency dependent
normalization. The normalization serves to whiten the
crosspower spectra and tliecreby minimize the effect of
narrswband signal interference. While the SCOT may pro-
vide improved broadband signal detection, it mav be possible
to improve the SCOV, as defined by Carter, et al., by esti-
mating the crosspower function with use ot the prediciton

error transform (PET). King (2) has demonstrated that the
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auvtocorrelation function of broadband signals may be more

accurately evaluated using the PET.

1.2 Comparative Evaluation

In order to compare and cvaluate the 5COT, SCOT-

PET, and the cross-correlation function, a set of receiver

operating characteristic (ROC) curves are computed using
data simulated for two time dependent function x(t) and y{t). For

each function the simulated data containg

sl v ety RS | 0 B S ML

a c¢oherent, white,

broadbhand signal, incoherent, white proadband noise, and

four coherent, narrowband non-harmonic signals.

2.0 THEORY

2.1 Crosscorreilation

The crosscorrclation function may be defined in
the time domain by a convolution inteygral, or in the fre-

guency domain by the Fourier transform, Since it is con-

venient in this investigation to simulate sensor data in
the freguency domain,

“he crosscorrelation function is
defined as follows:

by (=1 6 (D) P2 4 (1) :

where ny(f) is the crosspower spectral density function.

The crosscorrelation may be normalized by the following
equation:

)
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where

b (0 = 1 G (fet?  ar (3)
bl = 1 G (£)eF2  Mar (4)

where ¢X(T) and ¢y(T) are the autocorralation functions for
the respective signals x(t) and y(t) and Gx(f) and Gy(f) are
the auto power spectra evaluated for the respective signals
x(t) and y(t). The normalized crosscorrelation as defined
by eqn. (2) is evaluated for comparison with the SCOT, which

is also a normalized function.

2.2 Smoothed Coherence Transform (SCOT)

The SCOT is defined by Carter et al. (1) au
follows:

o0

C(ty = J W(H)y(£)

-0

QH2TET 4 (5)

where W(f} 1s a weighting function of choice, and Y(f)
is the crosspower spectral density function with a frequency
dependent normalization. The spectral function is defined

as follows:

Sy (£)

/Gx(f)Gy(f)

where ny(f), Gx(f) and Gy{f) are the crosspower and auto-

power spectral density functicns evaluated for the respective
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signals x(t) and y{(t). For the applications con:idered in
this investigaticn all power spectral density functions are

defined in the freguency domain.

2.3 The £COT-PET Function

The autocorrelation function may be represented
by the prediction error transform (PET) as demonstrated by
King (2) and in a similar manner the crosscorrelation and
5COT functions may also be represented by PET. Actually,
PET is simply an inverse Pourier transform, which has a
derivation based upon a prediction error function. When
applied tc SCOT, the cross-spectral function y(f) is esti-
mated or predicted with a discrete convolution filter, and
a prediction error is defined in the frequency domain.

The maximum entropy power spectra has a similar PET repre-
sentation bascd upon a prediction error defined in the
time domain,

The PET may be a useful representation of a function
that is derivablce Erom a Fourier transformation. The FET
representation is useful only if the transformed function
(such as y(f))is known over a limited region in the time
or frequency domains. In order to derive the PET the
transtormed function must also be a predictable (non-random)

function or have predictable components.

The cross-power spectral function y{i) has a

predictable, pcervicdic modulation given by

i2mfT ®
: R
where T is the time delay between two broadband signals g
X(t) and X{t+T) which have a common, coherent, broadband -

component. If the periodic modulation is well defined
1n a low noise environment over a sufficient spectral
interval, then the Fourier transform of the modulating

i

1

l_

i 3
component, exp(i2nfr), is a well detined, detectable SIh¢ g
frinction centored about T in the tiwe domazin. However, 3
-




if noise or other interfering components are present in the
cross power spectral function y(f), then the S5COT function,
which is defined by the Fourier Transform, may not provide
a well defined SINC function representative of the coherent,
broadband signal component. When interference »r noisy
components are present, or when the cross-power spectral
function ¥(f) is known only over a limited bandwidth, then
the periodic modulation component of Y (£) may be better

defined with use of the predictiovn filter a, as follows:

N
Te = E1%Veon (7
where Y is the discrete representation (N components) of
the function y(f). A prediction error e, may be defined by
the expression
ee =Yg - Yf (8)
and a new filter bg, the prediction error filter, may be
introducted as follows:
N N
= I b 9
er = L Py Yey (9)
If it is recalled that the SCOT, C(1), is defined as the
touricer cransform of y(f) , then the Fourier transforwm of
eqn. (9) results in the following expression:
NN -i2mtn(Af)
E, = C(t) L b e n (10)
N n
n=0
where by is the Fou. ier transform of ec- The SCOT function

is defined by solving egn. (10) as follows:
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c(rt) (11)

N .
v bN e—lZﬂtn<Af)

The SCOT, as defined by eqn. (11}, is the inverse of the
Fourier transform of the prediction error filter bi. The
inverse Fourier transform soluticon is called the prediction
error transform, because its deriwvation is a result of the
definition and application of the prediction error filter.
The prediction error filter coefficients, b:,

may be evaluated by squaring and minimizing the error

given by egn. (9). The solutions for the coefficients
bi and the constant EN have been formulated by King (3}

with use of the Burg technique. The solution agrees with
that obtained by Burg (4), who found the unknown coefficients
by maximizing the entropy. Solutions for E, and bi are a

N
set of iterative equations listed as follows:

_ .2
El =rg (1l2a)
(ré % zero delay autocorrelation coefficient
of data set Y consisting of M data samples
2
- - N+1
Byr1 ™ By [1 * (bN+l)] (12b)
bY = 1.0 (13a)
1
M—§+l (BN) GN
S0 37 %N
N+1 3
N+l T T M-N+1 T (13b)
R KCH R Nm)f
=1 b
N+l N N+l oW *
b ' = b+ bl by ) {13¢)
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The forward prediction errors lj' and the backward prcdic-
. N . .
tion errotxs 83 are defined as a function of the known, cross-

power spectral data set Ye 2as follows:

al =

j"'l - Yj+l (14a)
N+1 _ N+1 N N
aj = bN+l Bj—N + aj {14b)
1

BT = v.

3 Y] (15a)
N+1 N+1 * N N

h _ A
sj = (bN+l) “j+N + gj (15b)

3.0 DATA SIMULATION

Since the crosscorrelation, SCOT, and SCOT-PET
functions must necessarily be evalusted in succession and
repeatedly in order to plot a set of ROC curves, it is
wise to simulate data in the frequency dowmain if possible,
sO as tou prevent repeated transformations of data sets
otherwise simulated in the time domain. Both the cross-
correlation and 5COT functions reguire a representation
of the c¢iosspower spectral function ny(f), The spectral
function ny(f) may be expressed very simply by assuming
that the broadband and narrvowband signal components are

steady =tate signals such that

(£) = G_(£) elzﬁfT ‘G i2wET

where G, (f) is the antopower spoctra ol the coherent broad-
13
ad

band component and G., 13 the aulovower ol the coherent narrow-
2 3 12

band component and the time delay betwcen the funcions x(t)
3

rlh

N

y{t) is T seconds. Since it is assumed that the signals

C

2 (t) and Y(t) both contain incoherent, broadband components

~
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the respective autopower spectral functions C_(f) and

Gy(f) are given by:

Gx(f) = GI(t) + GB(f) + Gy
(7
Gy(f) = GI(f? + GB(f) + Gy

where the incoherent broacdband components G.(f) is assumed

to be of equal power for hoth x(t) and y(t)?

The signal component spectra may take any form
over a given bandwidth, but in order to establish a standaxd
for future ROC curve comparisons, all broadhand spectra
{inccherent and coherent) are defined to be uniform (white;
spectra over an arbitrary bandwidth. By assuming white
broadband spectra, the whitening effect of trequency depen-
dent normalization (used in the SCOT function) 1s minimized.
Consequently, the improvement in signal detection, provided
by the SCOT, is a minimal improvement due only to the
normalization of the narrowband components.

The broadband spectral components are assumed
to have signal amplitudes with Gaussian distributions such
that,

1
G (f) = % In(l/R)) (18)
G, (£) = oé In(1/Ry) (19)

whe e R and Ry are uniformly distributed random numbers.
Valueg are assigned by arhitrarily let+ing
o, = 1.0
I

and by defining a broadband power SNR as follcws:

2
=
!

2
g =
BBSNR 10 L.og(OB/OI

BBSNR = 10 Log{o
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Similarly, a narrowhand SNR is defined with

respect to unit power so that,

NBSNR = 10. Loq(GN) . (21)

It remains only to specify values of the cross-
correlation normalization functions ¢X(o) and ¢y(o) as follows:

1
¢x(o) = f_l [GI(f + GB(f)] af + Gy

(22)

i

9, (0) 2 [GI + GB] + Gy

where the spectral components awve arbitrarily defined to
exist over a spectral band from -1 to +1. Since identical
component power levels are assumed in both signals x(t) and
y(t),

¢ (0] = ¢ (o) (23)

Tiie crosspower spectral functions u Yoob (E)

xy(f Xy
and the autopower functions Gx(f), Gy(f), ¢x(o\, ¢ (o) are

all specified by the preceding equations for given values
of BBSNR and NBSWR. The crosscorrelation, SCOT, and SCQOT-
PET are Fourier or Predicticn Error transfoims of the
defined crosspower and autopower spectral functions as
defined by eqns. (2), (5), (6) and (11). A set of ROC
curves may be constructed by re-=zvaluating the cross-
correlation, 3COT, and STOT-PET functions repeatedly, and
counting the false-~alarm peaks and signal peaks akove

specific threshold values.
4.0 EXAMPLES OF CROSSPOWER FUNCTIONS

The complex, crosspower spectral function Y(y(f)
is computed and plotted in Figs. 1, 2 and 3. The spectral

function consists of white, broadband, coherent and incoherent

-18-
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components and four equal power narrowband componentz. The

magnitude function_{Y (f)( is observed in Fig. 1 for 128

(o
computed points, and zér a broadband SWR = 1.55 dB, and a
narrowband SNR = 20 dB. The real partv of ny(ﬁ) is shown
for 128 computed points and the same SNR values in TFig. 2.
The real part of y_ (f) is also shown in Fig. 3 Zfor 128
computed points, but with the BBSNR = -20 dB and the
NBSNR = 10 dB. |

The low frequency modulation observed in Fig., 2
is not real, but is rather due to a sampling rate which is
inadequate for display purposes, although it is adequate
for computational purposes. The higher frequency compoient

eiZWfT

is well defined in Fig. 2, but not so visible in Fig. 3
due to the large difference in BBSNR. Of course when the

BBSNR is reduced as in Pig. 3, the four narrowband compo-

nents are more visible.

5.0 EXAMPLES OF
CROSSCORRELATION, SCOT, AND SCOT-PET TIME FUNCTIONS

The normalized crosscorr=lator time function
(in decibel units) is shown in Fig. 4 for a time delay of
-0.3 sec., BBSNR = -20 dB, 2and four narrowband components
of 10 dB each. The broadband signal peak is visible at the
time delay of -0.3 sec., but only slightly above the
largest clutter peaks. The SCOT time function (in decibel
units) computed for the same SNR values {(as used in Fig. 4)

I

has a more prominent signal peak as observed in Fig. &,

The signal peak height is the only noticable difforeance
between the crosscorrelator and SCOT time functions. The
clutter patterns for each time function are identicat,
hecause the broadrand signal and nolse spectra are uniform

(white) spectral distributions The clutter patterns would

49—
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be very different if the broadband spectra were not uniformly
(non-white) distribuied, because the SCOT has a frequency

dependent normalization. Conseguently, the detection charac-

R R R

terictics of the SCOT and SCOT-PET functions are expected

to improve significantly for non-white broadband spectral

“ functions.

The SCOT-PET time function, which is ~omputed for

AVl Tl

the same SNR parameters used in Figs. 4 and 5, is shown
plotted in decibels ia Fig. 6. The signal peak is cven
more prominent at the time delay of -0.3 sec., and fewer
clutter peaks are observed than in the two previouvs time
functions. Based upon the three detector time functions
shown in Figs. 4 - 6, the SCOT-PET time function appears
to offer the best signal detection capability.

6.0 RCZ CURVES

6.1 Construction Based Upon 100 Time Functions

One set of time functions is insufficient evi-
. dence to form judgment, so a set of receiver operating
characteristic (ROC) curves are constructed based upon
100 sets of computed time functions. The results are
shown in Figs. 7, 8 and 9. The ROC curves are constructed

for false alarm probabilities between .01 and 1.0. Lower

ek i i el b P R gt o g p IR B

values of the false alarm prcbability would require that
many more correlation, SCOT, «nd SCOT-PET time functions

would necessarily be computed. While the range of false

R T

alarm probabilities investigated are not necessarily of

ke

practical value, they are adequate for comparing the three

< different detectors. The set of three ROC curves are con- 3
o structed for a BBSNR = -25 dB and a NBSNR = 10 dB (for each ‘
“ of four NB signals)., The crosscorrelation, SCOT, and S5SCOT-

PET ROC curves are shown in Figs. 7, 8 and 9 respectivel:.

O0f the three ROC curves shown the SCOT has the best detection

G

probabilities. Of course the lower false alarm probabilities




are usually of more interest in underwater acoustics appli-
cations, but only for detection probabilites above 0.5,

The SCOT-PET ROC curve has the lowest false alarm proba-
bility for the dctection prcbahility of 0.5.

The constructed ROC curves are more reliable in
regions of high false alarm orobabilities due to the high
density of data collected in those regions. Consider that
data points with a detection probability of 1.0 are based
upon 100 signal detections whereas a data polnt representing
a detection probability of 0.01 is based upon only one
detected signal.

6.2 OQtlier BBSNR Values

Two 2ther sets of ROC curves are constructed for
BBSNR values of -40 dB and -20 dB to illustrate the similari-
ties and differences of the three broadband signal detectors
with changing BBSNR values. Again, four narrowband signals
having NBSNR = 10 dB each are employed in constructing the
ROC curves. In order to minimize computing time and costs,
these and other ROC curves are constructed from only 25
sets ¢f time functions. However, these ROC curves are pre-
sented only to indicate trends due to parameter variation.
In Fig. 1t the crosscorrelator, SCOT and SCOT-PET ROC curves
are shown on the same graph for a BBSNR = -40 dB. The cross-
correlator and SCOT ROC curves are nearly identical for all
false alarm probabilities, whereas the SCOT-PET ROC curve
has shifted toward higher false alarms. Detection perform-
ance has deteriorated significantly for the SCOT and even
more so for the SCOT-PET. Hawever, the Getection perform-
ance has changed only slightly rfor the crosscorrelator.
Apparently, tha S5COT approaches the crosscorrelator perform-
ance and the SCOT-PET performance deteriorates toward
lower detection probabilities with decreasing BBSWR values.

The set of ROC curves constructed for BB3SNR = -20 dB

is shown in Fig. 1ll. The SCOT-PET ROC curve clearly indicates




superior detection performance at lower false alarm proba-
bilities, although the SCOT is also considerably better than
the crosscorrelator for lower false alarm probabilities,
Again the crosscorrelator ROC curve has changed only slightly
toward an improved detection performance. It is apparent
that for the BBSNR values investigated, the crosscorrelator
detection performance is inadequate for applications requiring
a low false alarm probabhility. But both the SCOT and SCOT=-
PET may have useful detection characteristics in regions of
low false alarm probabilities for BRB3NKk values of -25 dB or
lower. However, this investiga*ion does not examine detoc-

tion performance capability in regions of low false alarms.

6.3 Partially Coherent Broadband Noise

All previous discussions and examples have assumed
that the broadband noise (occurring in the signals x(t) and
y (£) 1s incoherent. But complete incoherence is unlikly in
most radar clutter environments. For example, low level
partially coherent, directional, hroadband signals may be
present in the atmospheric clutter or in receiver channels. There-
fore, a set or ROC curves are shown in Fig. 12 for a BBSNR = -25 dB
and four narrcwband components having a NBSNR = 10 dB each. The
ROC curves of Fig, 12 indicate that the detection performance
of all three detectors has deteriorated, but by very different
amounts. The SCOT-PET has suffered the most performance deteri-
oration, while the crosscorrelator has only suffered a slight
deterioration. While the SCOT detection performance is dimin-
ished by the noise partial coherence, the 3COT detection perform-

ance remains superior to that of the crosscorielator.

7.0 SUMMARY

The broadband signal detection performance of the




crogscnrrelator , SCOT, and the SCOT-PET have been compared
for an environment containing four strong, interfering,
narrowband signal components, and strong, independent,
broadband noise. Under such conditions, the crosscorrelator
e:xhibits poor, but stable detection performance, whereas
the SCOT and SCOT~PET appear to have useful detection charac-
teristics in regions of low false alarm probabilities.
However, the SCOT and SCOT-PET detection parformance is
inhibited by increasing noise levels and increasing noise
cokherence. The 5COT-PET has the best detection performanc:
for low and incoherent noise conditions, but the SCOT
detection performance becomes superior as noise levels and
noise coherence increases.
Unfortunately, the constructed ROC curves do
not indicate the actual detection performance of tha SCOT
and SCOT-PET in regions of wvery low false alarm probabilities.
Most detector applications require very low false alarm proba-
bilities. However, the constructed ROC curves do show that
the SCOT and SCOT-PET have application in the presence of
struong, narrowband signal components, which very severely
degrade the detection performance of the crosscorrelator.
Both the SCOT and SCOT-PET will have even better
detection capability in the presence oif non-white, bioad
band noise. Also, the detect.i.n performance of the SCOT-
PET may be improved further with use of larger filter sizes
and when fewer cycles of the modulation component

iwt
e

are present. These initial conclusions indicate that the
SCOT and SCOT-PET deserve serious consideration as broad-

band signal detectors, and that their detection character-

istics should be investigated further.
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RESOLUTION AND DETECTION CHARACTERISTICS
OF THE MAXIMUM ENTROPY METIHOD

1.0 Introduction

Investigations of the maximum entropy method (MEM)
nearly always provide an examination of the technique and its

properties with the use of simulated data. It is thought

that this report describes one of the earliest investigations !
of MEM using actual radar signals that are receivea with a
uniform, linear, antenna array. Stable MEM wavenumber specﬁra
that are computed using the actual data apparently have the
same high resolution that has been so often demonstrated with
simulated data. Simulated data cannot include all the charac-
teristics of actual radar data, which is usually strongly ani-
sotropic in wavenumber and time variant. Therefore, tests
of the MEM that use actual radar data are most significant in
demonstrating the usefulness and accuracy of MTOM,

Since the MEM is effective in whitening a spectra,
it may be useful for detecting radar signals that are often
obscured by powerful but anisotropic radar clutter. The MEM

is demonstrated to Lndeed be a likely candidate tor {further

study as a detcctor of weak radar signais present in a doppler

radar receiver,

2.0 Radar Data

A

e g

The MEM and MIM techniques are applied to actual

o

radar data that is collected by a 14 sensor linear array
within a laboratory environment, Two scurces, each having
power levels of 43 dB above the averaged backgronnd radration,
are located at 18 and .2 degrees from Lhe 0 degree radial
which is novinal to th. linear array. The sensor array and

radar sources arc hoth located within an anechoic room which

oo B o =

substantially reduces specular wall reklections. Howoevel,
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the non-specular reflectiors which are detected by the array
make up a highly colored background wavenumber spectrum.
Recelver noise and sensor phase distortion are preseat, kuc
are unknown spectral guantities.

The 14 sensor array dlata is collected as (I-Q pair)
data so that 14 complex numbers or 28 channels of data are
collectea and recorded., The radar signals are short durat-ion
pulses so that each set of 14 complex numbers represent one
spatial snapshot. A total of 1024 snapshot data are recorded.

A phased array antenna pattern has a mainlobe bean-
width of 13.4 degrees (at the -3 dB levels) for a 14 senscr,
7.5 wavelength array. Consequently, two sources separated by
only ¢ degrees are not resolved with a conventional summed,

phased array, antenna pattern,

2.1 The Maximum Entropv Method (MEM)

Two methods of ohtaining stable MEM wavenumber
spectra are employed for analyzing the array radar data.
One nmethod employs averaged covariance matricies and the othzr
method utilizes averaded prediction error filter weights.
Both methods provide stable MEM wavenumber spectra with suffi-
cient resolution to identify the two closely adjacent sources.
Both averaging methods are described and demonstrated in an
earlier proygress report dated 1, Nov, 1979 (l1). The MEM
algorithm employed in this analysis utilizes the Burg tech-
nique, which substantially roduces the computing effort
required of the conventional matrix ceqguation formulation,
The Burg technique is also described in detail in the earlier

vrogresg report (1).

2.2 The Maximum T,ikelihood Method (MLM)

For comparison purposes, the MLM is also used to
analyzr. the array data. The MLM is evaluated using a predic-

tion crror formulation proposed by Burg (2), which is similar

~68~
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to the MEM spectral formulation. Because of the similarity y
in formulation, the same prediction error filter weights ars , -
computed and used for both the MEM and MLM formulation. The

Burg technique is also employed i:.. evaluating the MEM., The
MLM formulation is as follows:

N
= (1)
PN(k) = SRS -
Z n n
n=1
1
- n+1l SN+l * !
where pn+l = Pn [ 1 - (Yn+l) ( n+l) ] r2)
;
;
Pl = r* (autocorrelation of data samples) E
o n _iks (Ax) E
Fn(k) = I Y. (3) I#
g=1

Yg are prediction error filter weights

k = (2n/X) sin (8) (waveaumber component)
6 = signal angle of incidence
A = signal wavelenqgth

2.3 Results <f Analysis

The MEM and MLM wavenumber spectra for the first
Adata snapshot (first set of 14 complex numbers) are shown in

Figs., (1) and (2) respectively. The MEM spectra of Fig. (1)

~69- ‘




is typical of such single snapshot spectra in that it contains
many very sharp peaks ©Of varying magnitude. In such spectra:
it is often difficult to determinc which peaks represent signals.
However, there are three large peaks in the MEM snapshot spectra
that are at azimuth argles in the vicinity of the two =ignal
incidence angles. The two signals are located at andgles of
18 and 22 degrees. More accurate and reliable MEM wavenumber
spectra are obtained if particular MEM parameters are averaged
over several sets of snapshot data. Subsequent MEM wavenumber
spectra, which are shown, do incorporate averaging,

The MLM snapshot wavenumber spectra is shown in
Fig. (2) where one large and prominent peak appears at an
angle in the vicinity of the two actual signals. In only one
snapshot of data the MLM spectra is observed to contain very
weak extraneous side (noise) veaits, but does not indicate the
presence of both signals. Averaging is incorporated in subse-
quent computed MLM spectra with the hope of improving resolu-
tion in the MLM spectra,

Other MEM and MLM wavenumber spectra are shown in
Figs. (3) and (4) for which the covariance matrix is averaged
over 6 sets of snapshot data. The MEM spectra of Fig. (3) does
indicate the presence of two signals although one signal peak
is about 10 or 12 dB smaller than the other. The side peaks

are reduced in number and in magnitude in comparison with the

MEM cnapshot of Fig. (1). The averaging of the 6 covariance

matrices has improved the accuracy and reliability of the MEM

. i
& T

.

spectra, but the resolution remains insufficient. The MLM
spectra, which is computed for the covariance matrix averaged
over 6 sets of snapshot data, has not changed in any signifi-
cant way 1in comparison with the snapshot spectra shown in
Fig. (2).
The MEM wavenumber spectra, which is shown in Fiqg.

5, is computed using prediction error filter weights averaged
cver 6 sets of snapshot data. The MEM spectra of Fig. 5 does

indicate the presence of two closely adjacent signals, hut the
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resolution capability appears inadequate to accurately iden-—
tify the two signals. Side peaks are still quite numerous
and large in magnitude when cowmpared with the snapshot MEM
spectra of Fig. (1).

Averaging does improve the resolution capability of
the MEM. The MEM spectra is shown in Fig. (6) where the pre-
dicticn error filter weights are averaged over 12 sets of
snapshot data. In Fig. (6) the two signals arc well resolved
and accurately located at azimuths of 18 and 22 degrees.
Also, side peak levels are reduced but are not suppressed
as well as with the MLM. One signal peak (at 18 degrees) is
about 1 dB balow the other signal peak although both signals
have the same power level,

In order to resolve the two signals with MEM spectra
computed with averaged covariance matrices, further averaging
is necessary. In Fig. (7) the iwo signals are resclved and
accurately located by averaging the covariance matrix of an
MEM spectra over 18 consecutive sets of snapshot data. However,
as in Fig. (6), one signal peak is about 1.5 dB below the
other signal peak. The MLM spectra computed using the same
averaged covariance matrix is shown in Fig. (8). The two
signals are nct resolved in the MLM spectra, and are not
resolved even with further averaging of the covariance matrix

in which 27 sets of snapshot data are utilized.

3.0 Signal Detection

Because of the spectral whitening capability of
the maximum entrooy method, tnere is a large improvement in
the ratio of SNR (out) to SNR {(in). In order to demonstrate
the detection capability of the MLM, a tvpical signal-to-
clutter environment is simulated for a doppler radar receiver.
Doppler radar clutter is simulated as shown in Fig. (9) where
random phased <lutter bands ha = power levels typical of ground,

rain, and interference clu:-ter Such a clutter model has been

&




x
i
W

used previously by Sawyers (3) in his demonstration of adapt-
ive filtering. A signal having a 0 dB SNR 1s located between
the clutter at the frequency ratio of .375 as denoted by the
arrow in fig. (9). The signal is detected as shown in fig.

(10) by applying MEM to several sets of 32 data samples and
using 24 filter weights. The strong clutter bhands are very

effectively whitened by MEM such that the largest background
peak in fig. (10) is about 10 dB below the signal peak level.

Similar results may be obtained for anv signal location.

For example, in fig. (11) a signal located at the center of
the interference clutter (.65) is equally well detected again
with MESA applied to consecutive sets of 32 data samples

using 26 filter weights. In both fig. (10) and (11) the MEM
filter weights are averaged over 30 consecutive sets of 32
cdata samples. While considerable averaging is used to achieve
the results indicated in figs. (10) and (11), less averadging
cf fewer filter weights may also achieve gatisfactory signal

detection, but with less resolution capability.

4.0 Summary

The maximum cntropy method is efrective in resolving
signals located within the mainlobe of a conventional antenna
pattern. However, the MEM is accurate and stable only if some
form of parameter averaging is utilized. rs demonstrated, the
MEM as compared to the MLM has superior rosolution, but the
MTM appcarc &5 more eflectively whiten the background (noise)
spectra. Previous progress reports issued under this investi-
gation contained MEM spectra which were computed using only
simulated data. In this report all MEM spectura ave obXained
using actual radar signals received hy a 14 sensor linear array.
Previous simulated data contained simulated GCaussian, whitoe
noise, out in this report the collected radar data contains
typical receiver and sensor noise and disortion. Tt is ro-

agsuring to know that the MEM is effective in resolving closely




adjacent signals mixed with either simulated white ncoise or
with actual and typical electronic system noise spectra.

The results achieved with the MESA doppler radar
detector are most promising., However, such exceptional
results did require an average of over 32 sets of computed
prediction error filter weights. Real time applications may
not allow for such a large average. Because of vhe excellent
spectral whitening characteristics that are exhibited by the
MLM, perhaps the MLM is a more promising technigue for real
tine doppler radar detection. Either MESA or MLM appear to

offer considerable improvement in radar signal detection.
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RANDOM DATA SAMPLING

Introductior

Random data sampling may sometimes be a usceful sampling
technigque when estimating power spectra (l). TFor example, the
cost of a large antenna arrxay may be significantly lowered, by
reducing the number of antennas (data samples) and intentionally
undersampling through the use of a random distribution of anten-
nas. Random data sampling may also be cequired if data samples
necessarily have a random distribution. FPFor example, radar an-
tinnas or acoustical sonobouys may bhe dropped from the aix and
permitted to foll freely to the ground our water, and land in a
random planar distribution.

With use of random data sampling, the side lobes of a Four-
Ler powor spectra have a random distribution in both number and
location. However, the typical Fourier spectral characteristics
such as recgolution and side lobe levels may be retained in an av-
erage of many such Penrier power spoectra computed using random
sampling. Useful Fourier power spectra also resull from random
data sampling even with very sparse (undersaupled) data sots.

It is guestionahle whether random data sampling is offoc-
tive when the maximum entropy method (MEM) is usced to compute an
estimated power spectra. Ezxamples of both the Fourier and MKM
power spectra are computed using random data sampling to demon-
strate the effectiveness of random data sampling with these two

power spectra estimation techniques.

Lxamples of Fourier Antenna Patterns

Fourier antenna patterns may be computed by taking the
gpatial Fourier transform cf signals incident to an -~ .tenna array.

The Iourier transform of N spatial data points Y, ig as follows:

1. -ikx
[xd n

~86-

1
L)

. ';ﬁ m S

ok

®
N
R
®
N




where Y, i3 the measurced data and k is the gsignal wavenumber de-

ffined as follows:

k = (27/A) sin{9)

vy = A elkoxn + N ellb
n

oL ! = (ar sin ((

fou 9 (2m/X) 111()0)

The amplitude, wavelength, and angle of the incident signal isa
respectively given by A, A, and 0. The nolsc amplitude n has a

Gaugsian distribution, and the noise phase § has a white distri-

bution. 'The N array antennas are distributen at positions x alonc
1 e arxrc ntennas are distributea o 120 ons x

a one dimensional axis., Tn a randomly distributed antenna arrvay
the positions xoare located with equal probability along a lone
. .

ot length I according to a white distribution function.

The resulting Pourier antonna patterns, computed using ran-
com sampling are shown in Figs. 1-3. In the firnst example of Fiqg,
L a signal is Jdetected with 16 randoaly distributed antennas loca-

ted in a straight Tine array having a totadl length ot 8 wavelongthes,

Side lobe structure is noticably higher than those obtained with
halt-wavelongth sampl ng. However, in an averadge of L0 such an-
Lomna pattoerns, tho resultin: averaged oattorn, shown in Pia, 2,
has roeduced «3d0 Tobe Tovels that are about 10 dB Lotlow the main
Lobhe.  Furthev averaging of such antenna patterns will resnlt in

lower gside lobe levels approaching the -13.6 dB minimum level,

The width of the moin lobe in exawmples shown in Migs. 1 and

hl N o . N e SN E IS PN BN - PR IR 0 29 F oo S N L
2 is about the same as the width obtained with Yhalf wavelongth

sampling. Only the antenna pattern side lobe structure is signili-

cantly altered when using random daota sampling. i a third cxam-

ple an average of 10 ¢ntenna patterns is shown in Fig., 3, whera

cach Touricr antenna pattern is computed using a very sparse data
set consisting of only 4 data samples , which are randomly distrib-

utaed over a single dimension of 8 wavelcenagths in leongth. The re-

o —————
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sultant averaged antenna pattern is surprisingly good, when it is

considered that the detected signal is undorsampled by a factor of

four.

Examples of MEM Wavenumber Patlterns

Becouse the maximum entropy method may bhe derived using
the discrete Wicnel prediction filter (2), it is unlikely that
meaningful data predictions are possible with random data sampl-
ing. Tor example a predicted signal &m is given hy the digcrete

convolution as follows:

where the data scet X must be a set of uniformly samplad data.
Tf only a relatively small nunber of data sawples are missing, then
cgn. 3 still may provide useful predicted data Yrom which the proe-
dictiop error may be minimized. lHowever, if the entire data get
is obtained using random sampling, then the data et Qm pradicted
using egqn. 3, 1s not oxpected to boe very meaningtul. ince the
prediction Iilter bn ig derived from a winimum error devived with
eqn. 3, the proddiction {ilter bn may also be an inefficient filtoer
if the data scet X is derived usivg random data sampling.

The MEM all-pole wavenumber spoectva formulation docs oot
present. any apparcent problom with use off vandom data sompling, sincoe
the MEM wavenuumber spactra Lormiot ion contwoing only o discorete

Fourier transform of the prediction [iltor b oas indicated:

P(R) = (Py/K) /| L= w o oT (4)

However, since the prediction filter 1)“ in likely to be in error,
the MEM power spectra as given by eqn. 1 may also not he vory
meanico fful when compueced using rondom data saoping. Fxamp o of
MEM wavenumber gspectra ave demonstrated in Figs, 4-6, where the
first example is a MEM snapshot wavenunboer gpoectra computoed with

uniform data sampling, Other MEM waventuwboer spectria shown e

-9 -




are computed using random data sampling.

The signal is accurately detected in Fig. 4 by an & wave-
length linear antenna array having uniform half-waveleagth antenna
spacing. The MEM wavenumber spectra shown in Fig. 5 is computed
using 16 antennas randomly spaced along a straight line that is 8
wavelengths long. While both snapshot wavenumber spectra shown in
Figs. 4 and 5 are computed for a signal incident to the antenna
array at 30 degrees and with SNR of 20 dB, only the MEM spectra
computed with uniform half-~wavelength sampling accurately detects
the signal. The MEM wavenumber spectra shown in Fig. 5 indicates
that a signal is detected at about 16 degrees. Other MEM spectra
computed with random data sampling (not shown) alsc contained
similar false alarms. An average of 6 such MEM wavenumber spectra,
where each spectra is computed using random data sampling, is
shown i1 Pirg. 6. Even though 16 antennas are located randomly
along a straight line having a length of 8 wavelengths, neither
the individual 6 computed spectra or the average spectra indicated
a signal detection in a & degree window about the signal angle of
30 degrees. The averaged MEM wavenumber spectra shown in Fig. 6
contains only talse alarm peaks.

As anticipated, the MEM wavenumber spectra computed using
random deta sampling are not useful spectra, since MFM does require
the use of uniform data sampling at minimal half-wavelencth inter-~
vals. ©Of course if it is possible to obtain accurate estimatss
of a uniformly spaced data set using some extrapolation method.
then useful MEM spectra could conceivably be computed from a ran-
dom data set. It is doubtful that any useful spectral estimates
can be obtained with any spectral estimation technigue hased upon
the prediction filter, if random date sampling is utilized. How-

ever conventional Fourier spectral estimation technigues do provide

useful spectra using randomly sampled data.
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THE W-K SPECTRAL ESTIMATION TECHMIQUL

Introduction

The maximum entropy spectral analysis (MESA) tech-
nique and the autoragressive (AR) spectral nalysis technique
are both limited in accuracy and stability wy increasingly
noisy data. The MESA and AR techniquesg may be unnecessarily
noise liamited due to the definition of the Wiener prediction
error, which is minimized in both technigues. It hagc been noted
(1) that the conventional definition cf the prediction error
actually contains two error components. ©One zrror component
is the actual prediction error inherent in the predicted data
set ﬁm consisting of M data points. The other component error
is the noise present in the actual M data samples X

The prediction error may be redefined so that there
is only one error component, i.e. the inherent prediction error.
By redefining the prediction error, it is anticipated that spec-
tral estimation accuracy and stability of the resulting spectral
estimator will be substantially improved at the lower signal-to-
noise power levels. The resultant, new, spectral estimation tech-

nique is referred to as the Wiener-King (W-K) spectral estimator.

Prediction Error Definition

The conventional definition for the time dependent

prediction error en is as follows:
= x_ - x for (m=1,M) (1)

where there are M data samples o and M predicted data points
~

X The predicted data poincs are defined as follow:

92}

a x for N < M (2)

where there are N prediction filter coefficients a, (n=1,N}.

—-3945—




The conventional prediction error e is . (w.ction
of the noisv data as well as the predicted data. The data noise
may be readily eliminated by redefining the prediction error as
a function of noise free spectral components. A spectral com-
ponent yﬁ, which has frequency fp is defined by the exponential
function as follows:

1275 _m(d
y;!; - el2*\' p'n(ut) (3)

The "new" noise free prediction error e; is defined as follows:

P o JP - 3
®m T Y X

p i2nf _m(At) N

et = e 7 P I a_x (4)
m pe1 Rm-n

Tre "new" prediction error contains only one error comporent,
which is the inherent error present in the prediction function
ﬁm. A total mean squared prediction error may be computed by

’ summing the time depenl... sguarcd orror computed for all M pre-

dicted data points.

Predicticn Filter
A "new" prediction filter méy be defined by mini-

mizing a redefined total mean squared prediction error. A

total mean sguared prediction error EE may bHe ¢ fined as follows:
oF = P o2
B m “m l
D, P ki
eP ey = (vB -z )P - g e
m'm m m m m
S
je D - jS N & NN [
=T (yEyE - (PR oyt e g i ¥ (5) 3
cmoCtm m m mn*m mom %

oy
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Tho total mean sguered prediction error is expressed in detail

by combining egns. (5) and, (6) as £2llows:

: B M
P I ProPyx - © Py ok
Eg [l/(2“+lﬂ E v (ym) ta, xm“n(ym)
m=-31 n=1 "m=-M
N A NN M ]
- ¥ a*r § x*_ yp + 5 T a a; Tox X*-k’ (7)
n=1 " m=-p 7RO k=1 n=1 " * q=-y 077 W

By utilizing the definition ¢f the autccorrelatios and cross=-

correlation functions, expression (7) is simplified as follows:

D b M N N

.- P c <P . .

= r - % a (ny = & a* rf_ {n} + ¥ T a a*r (kan) (8

WY * k '
n=1 %Y n=1 " yx k=1 n=1 " X

where the autocorrelation of function yP is P

, the autocorrela-~
tion of function x 1s ro and the crosscorrelation of the func-
tions yp and X is r and ryx'
The total mean scuared prediction error may be mini-

mized with resvect to the unknown filter coefficients 2 as

iy 0 " \
— = - ¥ (i} + Tar (n-2) =20 (9)
745 ¥ n
; n=1
where < = L, N

The resultant expression egn, (9) is a set of N egua-

tions that may be simultaneously solved for the ¥ filter coceffi-

N equations mav be written as follows:

- f)a_.

follows:

Ajﬁm\
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Tl a0l vaye (e e v agr el = <P (1)
L = 2, alrx(—l) + a2rx(0) ot ayr (N-2) = :%X(g)
. . . . . (10)
. . . . . I
2 =N, a,r (=N+1) + a_ r (~N+2)+ ece + = P 1 %E
a 17 % 20k aer(O) - ryx(h) §§

i
|

The N equat.cns that define the prediction filter coefficients
a
r

¥
£y
e
-

| may also be expressed in matrix notation as follows:

_ - L

[al a, ay v aN] |rx(0) rx(l) R rX(N—l) r;x(l) %@

fﬁ

r (1 r (0} v oo - P =

) x(J’ rY(V 2) ryx(z) iE

. . . . = | & (11) e

: . . . . gg

5 T

r (N-1) r (N-2) rx(O) rSX(N) 2

. - = . :

E

where 1t is noted that r_(-n) = v (n). i
® X

The matrix eguation gien by eqn. (11} may be
written in shorthand notation as foliows:

et
®
=

(%
[t
0
a1
v e
-
=
2
=

The solution for the set of filter coefficients is nbtained

by inverting the autocorrelation matrix £ an? solving for o
the coefificientls as Zollows: ;
-1 i
= ro iz
2 N




Tt is necessary to solve eqn.

(al, Ags vt aN)

est.

of interest by simply computing

P

tors ryx at every frequency f

for every spectral comporent fp

(13) all coefficiencs

of

for

inter-~

However it is possible to determine spectral regions

the crosscorrelation vec-

. In this way it is necessary

only to solve for the predicticn filter coefficients in

spectral regions where the crosscorrelation vectors indicate

a strong correlation.

Power Spectra

Consider another prediction error € which is de-

fined to include the unknown signal amplitude Ap, i.e.
: =1 eP (14)
m p m
c = P g
S Ap{ym me
P N
&= A [y -~ % a.x ] (15)
m pl'm h=1 R m-en
The Fourier transform of egn. {15) results 1n an expression
for the spectral amplitude Ap as follows:
] I Y -iomen(at |
E(Z) = A t&(f—f ) - ¥(£) I a_e’ " J
T n
I [ "=
*(fp)
A s i . (16"
: [l - X(f,) L a elz'zpn(“t)]
P . n
n=1

spectra P (f
p p)

is given by the following




EC(E )
PIE) = . P ‘ - (17)
1 - X(£) ¢ a e +2MEgniet) |2
Pip=1 P

where £(f), which is the.Fourier transform of the prediction
error € , may e evaluated in the syectral region void of sig-
nals, i.e. £ # fp. For the present it useful to consider the
all pcle representation of the W-K power spectral technique by
evaluating the ratio of P(fp)/gz(fp).

It is anticipated that the W-XK all pole power ratio spectra
compuved with egn. (17) will be more stable but just as accurate
as comparative spectra computed with MESA. The formulation of
the W-¥ spectral estimator as given by egn. (17) differs from
that of MESA in that the Fourier transform X(fp) nf the data set
is utilized as indicated in eqn. (17). Of course the prediction
filter coefficients a, 6 are different from the prediction coef-
ficients used in MESA.

The presence of the data transfer function X(fo) is a sta-
blizing factor in the power spectral egn. (17). Spectral reso-
lution and accuracy of the W-K spectral estimator are expected
to be comparable to similar characteristics of MESA | since both
spectiral estimation methods have a similar all pole formuliza-
tion. However the W-K spectral estimator is expected to have
better stabi'ity and whiter spectra than that obtainable with

use of the MESA technigue.

Example Wavenunber Power Spectra

A W=K wavenuauber power specird wmay be obtalned {row eqn.
1

(17) by introducing the wavenumber k and spacial dimension x

with aid of the wariable relationships that follow:

o= Vo (27L8)
®x o= "7 ¢
where ¥V is the wave velocity. With the i1ndicated ¢
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variables, examples of W-K warenumber power spectra are compu-
ted feor only a few simple signal and noise conditions. At this
time the W-K spectral estimation techniqus is evaluated only to
indicate that the W-K spectral estimator is a viable and useful
method for obtaining stable, high resolutiosn spectral estimations
with only a single (snapshot) set of data.

A single signal is shown detected at 28.5 degrees in Fig. 1
using a 181 poirt W-K wavenumber power (ratio) spectra as given
by egn. (17). The simulated signal is actually incident to an 8
element linsar antenna array at an angle of 30 degrees and with
an SNR of 20 dB. The W-K spectrum shown in Fig. 1 is computed
usine only 3 filter coefficlents. The snapshot spectra is well
whitened by the W-K estimation technique althciagh the signal
location is imprecise with an error of 1.5 degrees. The same sig-
nal and noise model is used to obtain another W-K wavenumber
spectra using 4 filter coefficients as shown in Fig. 2. Again
the W-K spectra is well whitened, and again the signal peak is
located with the same imprecision. A comparison of these two
initial W-K spectra indicate a smalier filter size may provide
better noise suppression by almost 10 dB in the examples given.

For comparison a MESA wavenumber spectra is compuced for
the same sign: 1 and noise model used in the two W-K sp=ctra ex-
amples. However five filter coefficients are used in the compu-
ted MESA example toc better illustrate the large noise peaks
that freguently appear in MESA snapshot spectra. It should be
noted that whitened spectra do result when MESA is applied to
covariance matrix data that has been averaged over several snap-
shots of data. The example MESA wavenumber spectra is shown in
Fig. 3, where indeed 5 large peaks appear in the spectrum, but
only the peak located at aiout 31,5 degrees is representative
of the signal.

on another example two sigrals incident to the ancenna
array at =30 and 30 decrees are shown correctly detected by the
W-K spectral estimator in Fig. 4. 7Tne overall W-X spectra is

well whitenad with use of 6 filter coetficients. For comparison
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the same two signals (SNR = 20 dB) and noise ire shown in Fig.

5 detected by a conventional Fourier wavenumber antennu pattern.
The strong Fourier side lobe structure that 1s present in Fig. 5
is only very mildly apparent in the W-XK all-pole wavenumber spec-
tra shown in Fig. 4. If tke two spectra of Figs. 4 and 5 are
superimposed, the Fourier side lobe structure is found to occur
at the same spectral locations of the W-K side peaks. This simi-
larity in side peak location is an indicaticn of the stablizing
influence brought about by the presence of the Fourier transfer
function X(fp) that appears in the W-X spectra formulization.

The resolution capability of the W-K spectral estimator
is illustrated in Fig. 6, where two closely adjacent signals
(6 degrees apart) are resolved by the W-K spectral estimator.

For comparison purposes, the same two signals (SNR = 20 dB) are
shown detected in Fig. 7 as a single peak in a conventional
Fourier antenna pattern.

As had been anticipated, the W~X all pole spectral esti-
mator is a very stable, high resolution spectral estimation
technigque. 1In all examples shown the computed wawvenumher spactra
is well whitened by the W-K speciral esstimator. Spectral
whitening is always achieved with only one snapshot of data.
However some apparent improvements in this original version of
the W-K spectral estimation technique are indicated by the ex-
ample spectra. The small, numerous peaks that are oftea evi-
dent 1n the W-K spectra are a preblem when they occur in *the vi-
cinity of a signal peak. In such instances the presence of the
small, noisy peaks may be misintrepreted as a collection of

several very close signals. Perh y of the

ps an improved versio

a
W-K estimator, or a simple corraction of some overlooked program-—
ming error may serve to eliminate or at least minimize the pres-
ence of the small annoying noisv peaks.

The derivation of the W-K spectral estimator has util-
ized only the forward prediction error. Perhaps a minimiza-
tion of the total (forward and hackward) prediction error will

serve to further improve the W-K swpectral estimator.
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THE ALL-PCOLE AND ZERO-PCLE
FOURIER SPRCTRAL ESTIMATOR

: Introduction

éé The Wiener prediction filter is useful in deriving

by the hich resolution maximum entropy and W-X spectral estima-
% tion techniques. Both of these spectral estimators enploy
E' prediction filters that are defined by minimizing a mean

%& squared Wiener prediction error. The evaluation of these
H ?' prediction filters may require the computation and manip-
?'#? ulation of large matricies, which usually requires congid-

erable computational time.
= While these spectral estimation technigues have very

unique and useful properties, it is also possible to obtain

A

another useful spectral estimator by uti’izing a very simple, i
and quickly computed, prediction filter. The resultant spec- %
tral estimator is named tie "Fcurier spectral estimator", be- '3
cause it employs only the Fourier transform of the data set. 4
; The Fourier spectral estimator (FSE) may be dzerived either as ;
£ an all-pole or as a zero-pole wmodel, Both models arxe pre- :
-g' sented in the analysis that follows. %
g Wiener Prediction Filter }
?t Nerrowband spectral components in a detected signal :
%‘ may be charccterized with use of the Wiener prediction filter %
if as follows: 3
L . 4
4 A M - 2ty - ath) (1) :
i P 3
i where Ap and »_ are the amplitude ard frequency of a narrow-
j%: band component, and e(t) is the spectral prediction error.
LS .
R The prediction signal % (t) may be taken as the convolutior
:; of the prediction filter b (t) with the measurad function x(t)
A -111-
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as follows:

2(t) = [ib(t-t)x(r)dr (2)

Filter Definition

The prediction filter b{t) is usually defined by mini-

mizing the mean squared prediction error.

However i+t 1is much
easier

to choose a prediction filter that yields a zero pre-
diction error at the exponential frequency w_.

The filterx
is defined in the frequency domain by combining the Fourier
transforms of eqns. (1) ard (2)

PP

wn e R PRI etk

as follows:

Apé(m—mp) = B{w,t)X(w) - E(w) (3)

If E{w)~+0 as w*mp, then it follows from egn. (3) that

P = 4
B(wp t) Ap/ X(cup) (4)

All Pnle Soluticn

s e e LR

Even though eqn. (1) is correct,
it is not possible to evaluate X (o ).
values X(w )

is not known and
However, for high SNR

is approximately equal to its maximum magnitude X

0’
which is more readily determined. The prediction filter trans-

fer function may be specified approximately as follows:

Blw_,t) = A X (5) =
( p ) P 7 %o
&
By combining eqns. (2; and (5) the narrowband component ;
amplitude is given as follows: .
A= A Xw X, - E'(w)) (6)
P p ( P) / 0 & i
' { 1 7 §
x - - ¥ < 2
Ap E (mp) /{1 u(mp)/Yo (7)

Aok

'g‘s.




where E'(mp) is the prediction error due to the approximate
value of the prediction filter transfer function used in egn.
(7y. An all pole, w.ite, spectral power ratio may be obtained
from eqn. (7) as follows:
|a /E'}le/}l—x(m )/xl2 (8)
P p G
The freguency wp of the exponential components may be approxi-

mated by determining the complex poles of ean. (8).

Zero-Pole Soluiion

At spectral regions other than wp egn. (3) reduces to

the feollowing expression for the prediction erxor:
E(w) = Blw,t) X(w) (9)

The most obvious choice for the filter transfer function is
zero, however it may b2 more preferable to choose B(w,t) = 1.0,
so that

Elw) = X(w] (10)

The choice of egn. (10} permits other filter methods to be
applied for the elimination of strong interference signals,
that may otherwise appear as a pole in egn., (8)., A zero-pole
Fourier power spectra results from combining egn. (10) and
egqn. (7) to obtain an expression useful over the enti-e fre-
quency domain. The zero-pole Fourier spectral estimator is

given as followsg:

apx s [x@ / ( X (@) /xg) 17 (11)




Example Spectra

The conventional Fourier antenna pattern is compared
with several examples of the stable, all-pole and zero-pcle
Pourier spectral estimator (FSE). All examples are snap-
shot antenna and wavenumber spectral patterns, that are com-
puted for signals of 20 dB SNR which are incident to an 8
element, linear, antenna array. The white, Gaussian ampli-
tude noise data is ildentical (IR=3) in every example pre-
sented.

The conventional Fourier antenna pattern for one
signal incident at 30 degrees is shown in Fig. 1. The same
signal is shown detected with the all-pole, Fourier esti-
mator in Fig., 2, and with the zero-pole Fourier estimator in
Fig. 3. Other comparative examples include two widely spaced
signals incident at =30 and 30 degrees that are shown in Figs.
4,5, and 6; two closely adijacent signals incident at 3¢ and
45 degr=es, which are shown in Figs. 7,8, and 9. One other
set of examples (Figs. 10,11, and 12) show £five -~ ’'gnals, all
with the same power level (20 dB SNR), incident at angles of
-60, =45, 0, 30, and 37 degrees.

In all the examples shown, the FSE technique appears
to have improved spectral accuracy and improved resolution and
detection capahility in comparison with the conventional Fourier
power spectral method. The derivation of the FSE technique
appears to indicate that these improved spectral character-
istics are more significant with increasing SNR levels.

In the Fourier antenna prttern of Fig. 10, the signal
power levels of the inree signals detected near 0, 30, and 37
cgrees (re 1n zrror by several dB. These same errors are,
in effece, magnified by the FSE examples givern in Figs. 11
and 12. Consequently signal power levels indicated by either
FI'E technigue, are in much greater error than the power levels
indicared by the conventional Fourier antenna pattern. Tt
may ke difficult to measure either absolute or relative power

levels from computed FSE wavenumber spectra.
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Perhaps all signal parameters may be more accurately
determined by using bhoth the corventional Fourier spectral
and the Fourier gspectral estimat.nr techniques.
the FSE detection, resolution,

Hopefully
and spectral characteristics
may be determined in a future extensive analysis.
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